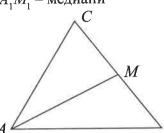
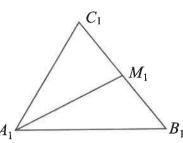
		2.1
	11	ы

 $\triangle ABC \cong \triangle A_1B_1C_1$ AM и A_1M_1 – медиани



Да се докаже: $AM = A_1 M_1$

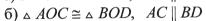


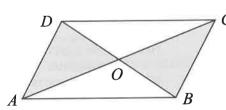
Доказателство:

2

Дадено: $AB \times CD = O$ AO = OB, CO = OD Да се докаже:

a) $\triangle AOD \cong \triangle BOC$, $AD \parallel BC$

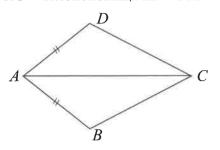




Доказателство:

Дадено:

ABCD – четириъгълник AB = ADAC – ъглополовяща на $\sphericalangle BAD$



Да се докаже:

a) $\triangleleft ABC = \triangleleft ADC$

б) BC = DC

в) CA – ъглополовяща на \sphericalangle BCD

Доказателство:

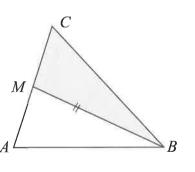
Дадено:

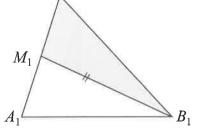
 $\triangle ABC$ и $\triangle A_1B_1C_1$ $BC = B_1C_1$

 $BM = B_1^{'}M_1^{'}$ – медиани $\triangleleft MBC = \triangleleft M_1B_1C_1$

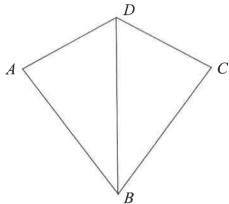
Да се докаже:

a) $CA = C_1A_1$ 6) $\angle ABC = \angle A_1B_1C_1$





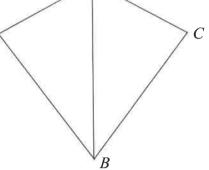
ABCD – четириъгълник $\angle ABD = \angle CBD$



Да се докаже:

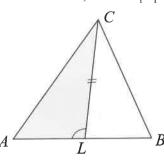
- a) $\triangleleft BAD = \triangleleft BCD$
- б) BA = BC

Доказателство:



Да се докаже:

- a) $AC = A_1C_1$
- 6) $AB = A_1B_1$



Доказателство:

Дадено:

 $\triangle ABC$ $\square \triangle A_1B_1C_1$

 $CL = C_1L_1 -$ ъглополовящи $< ALC = < A_1L_1C_1$

Дадено:

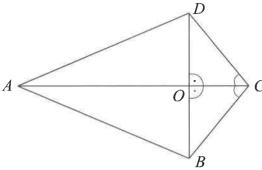
ABCD – четириъгълник $BD \perp AC$, $AC \times BD = O$

 $\sphericalangle BCA = \sphericalangle DCA$

Да се докаже:

- a) BO = DO
- 6) ∢ BAC =
 ∢ DAC
- B) ABC = ADC

Доказателство:



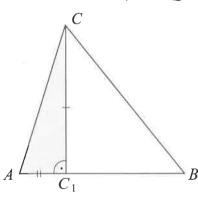
Дадено:

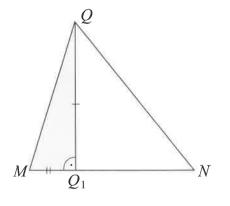
 \triangle *ABC* и \triangle *MNQ* – остроъгълни

 $CC_1 = QQ_1 -$ височини

Да се докаже:

- a) AC = MQ
- б) AB = MN
- B) BC = QN

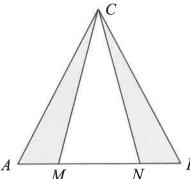




Дадено:

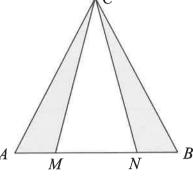
 $\triangle ABC (CA = CB)$

 $\triangle ABC (CA = CB)$ AM = BN



Да се докаже: CM = CN

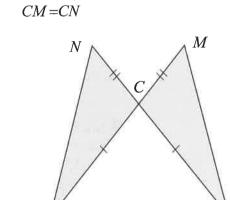
Доказателство:

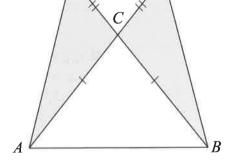


Да се докаже:

AN = BM

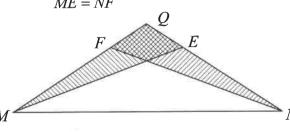
Доказателство:





Да се докаже:

ME = NF



Доказателство:

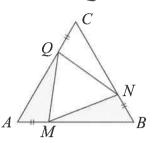
 $\triangle MNQ (QM = QN)$

Дадено:

QE = QF

Дадено:

△ *ABC* – равностранен AM = BN = CQ



Да се докаже:

a) $\triangle AMQ \cong \triangle BNM$

б) *∢ AMQ* + *∢ BMN* = 120°

в) $\triangle MNQ$ – равностранен

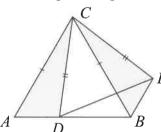
Доказателство:

-Дадено:

△ *ABC* – равностранен

 $D \in AB$

△ *CDE* – равностранен



Да се докаже:

a) < ACD = < BCE

 δ) △ $ACD \cong △ BCE$

в) $BE \parallel AC$

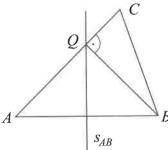
2 Дадено:

Дадено:

 $s_{AC} \times s_{BC} = M$ $M \in AB$

 $\triangle ABC$

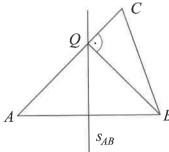
 $\triangle ABC$ $s_{AB} \times AC = Q, BQ \perp AC$ $\angle CAB : \angle ABC = 3 : 4$



Да се намери:

 $\not < A, \not < B, \not < C$

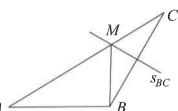
Решение:



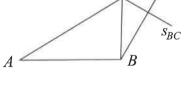
Да се намери:

 $P_{_{\scriptscriptstyle \Delta}ABM}$

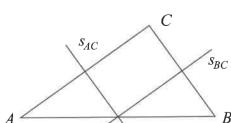
 $\triangle ABC$ $s_{BC} \times AC = M$ AC = 12 cm, AB = 7 cm



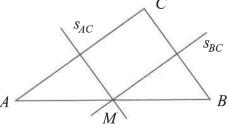
Решение:



Да се докаже: $\angle ACB = 90^{\circ}$

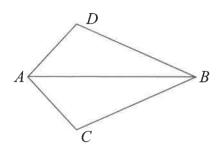


Решение:



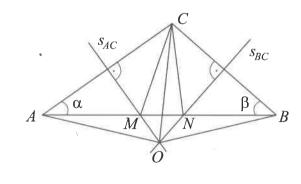
 $\triangle ABC$ и $\triangle ABD$ < CAB = < DAB< CBA = < DBA

Дадено:



Дадено:

 $\triangle ABC (ACB > 90^{\circ})$ $\triangleleft BAC = \alpha, \triangleleft ABC = \beta$ $s_{AC} \times AB = M, s_{BC} \times AB = N$ $s_{AC} \times s_{BC} = O$



Ла се докаже:

правата AB е симетрала на CD

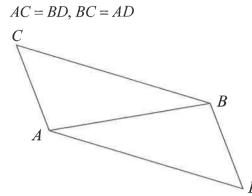
Доказателство:

Да се докаже:

- a) $< MCN = 180^{\circ} 2\alpha 2\beta$
- б) △ АВО равнобедрен
- B) $\triangle AMO \cong \triangle CMO$
- г) CO е ъглополовяща на \sphericalangle MCN

3

 $\triangle ABC$ и $\triangle ABD$



Да се докаже:

- a) < ABC = < BAD
- б) *BC* || *AD*

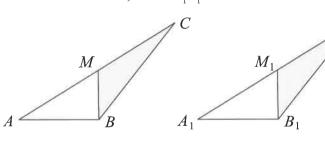
Доказателство:

Дадено:

 $\triangle ABC$ и $\triangle A_1B_1C_1$ $AC = A_1C_1, BC = B_1C_1$ $BM = B_1M_1$ — медиани

Да се докаже:

- a) $\triangleleft MBC = \triangleleft M_1B_1C_1$
- б) $AB = A_{1}B_{1}$

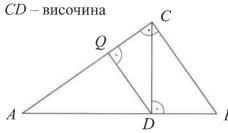


Доказателство:

1 Дадено:

 $\triangle ABC (C = 90^{\circ})$

 $< CAB = 30^{\circ}$



Да се намери:

- a) BC, AB, AD
- б) разстоянието от точка D до AC

Решение:

2 Дад

Дадено:

 $\triangle ABC (\alpha : \beta : \gamma = 2 : 1 : 3)$

AL — ъглополовяща

CD – височина

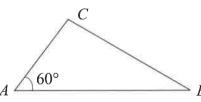
AL + CD = 21 cm

 $A \stackrel{C}{\longrightarrow} D$

Да се намери:

- a) CL, AL, CD, BC
- б) разстоянието от точка L до AB

 $\triangle ABC$ AB = 2 . AC $< CAB = 60^{\circ}$



Да се докаже:

 $< ACB = 90^{\circ}$

Доказателство:

Дадено: $\triangle ABC$ $< CAB = 30^{\circ}$ AB = 12 cmAC = 8 cm h_c

Да се намери: h_c , S, h_h

Решение:

Дадено:

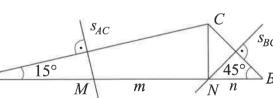
$$\triangle$$
 ABC
 $\alpha = 15^{\circ}$, $\beta = 45^{\circ}$
 $s_{AC} \times AB = M$, $s_{BC} \times AB = N$
 $MN = m$, $NB = n$

 C_1

Решение:

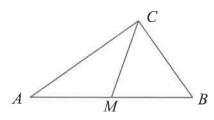
Да се намери:

a) $P_{\triangle MNC}$, ABb) $S_{\triangle AMC}$, $S_{\triangle MNC}$, $S_{\triangle NBC}$, $S_{\triangle ABC}$



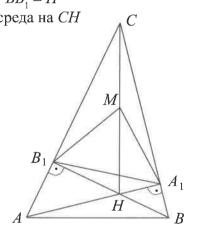
Дадено:

 $\triangle ABC (< C = 90^{\circ})$ СМ – медиана AB + CM = 15 cm



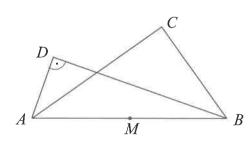
Дадено:

△ *ABC* – остроъгълен < $ACB = 30^{\circ}$, AA_1 и BB_1 — височини $AA_1 \times BB_1 = H$ *M* – среда на *CH*



Дадено:

 $\triangle ABC (C = 90^{\circ})$ M— среда на AB



Да се намери: AB, CM

Решение:

Да се докаже: $\triangle A_1B_1M$ е равностранен

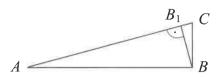
Доказателство:

Да се докаже: △ *DMC* е равнобедрен

8

 $\triangle ABC$

$$\alpha:\beta:\gamma=1:6:5$$
 $BB_1=6\ {
m cm}-{
m височина}$



Да се намери:

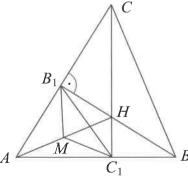
a) α , β , γ

б) AC и S _{ABC}

Решение:

Дадено:

△ *ABC* – остроъгълен $\angle BAC = 58^{\circ}$ BB_1 и CC_1 – височини $BB_1^1 \times CC_1^1 = H$ M – среда на AH



Да се намери:

Ъглите на $\triangle MB_1C_1$

Решение:

Дадено:

 $\triangle ABC$ и $\triangle A_1B_1C_1$ — остроъгълни

 $AC = A_1C_1$

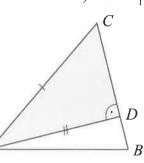
 $\triangleleft BAC = \triangleleft B_1A_1C_1$ $AD = A_1D_1 -$ височини

Доказателство:

Да се докаже:

a) $< ACB = < A_1C_1B_1$

б) $BC = B_1C_1$



Дадено:

 $\triangle A_{1}B_{1}C_{1} (\angle C_{1} = 90^{\circ})$ $CD = C_1D_1 -$ височини

Доказателство:

 $CL = C_1^{1}L_1^{1}$ – ъглополовящи

Да се докаже:

a) $\triangle CDL \cong \triangle C_1D_1L_1$

 $6) \triangle ABC \cong \triangle A_1B_1C_1$

Да се намери:

Решение:

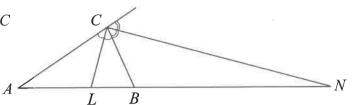
CQ, BC и разстоянието от точка Q до AB

1 Дадено:

 $\triangle ABC$ *CL* и *CN* – съответно вътрешна и външна ъглополовящи през върха ${\cal C}$ < CLN : < CNL = 5 : 4

Решение:

Да се намери: Ъглите на *△ LNC*



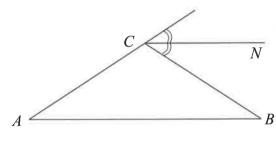
Дадено:

 $\triangle ABC (CA = CB)$ *CN* – ъглополовяща на външния ъгъл при върха C

Доказателство:

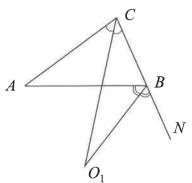
Да се докаже:

 $CN \parallel AB$



Дадено:

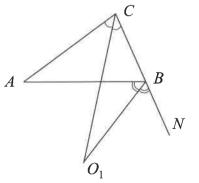
 $\triangle ABC$ $CO_{_1}$ – ъглополовяща на $extcolor{}{<}$ ACB $BO_1^{'}$ – ъглополовяща на $\sphericalangle ABN$



Да се докаже:

$$< BO_1C = \frac{\alpha}{2}$$

Доказателство:

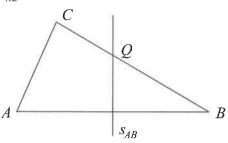


Дадено:

Дадено:

$$\triangle ABC (A = 60^{\circ}, B = 30^{\circ})$$

 $s_{AB} \times BC = Q, BQ = 8 \text{ cm}$

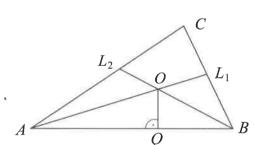


Да се намери:

$$S_{_{\vartriangle}ABO}, S_{_{\vartriangle}ACO}, S_{_{\vartriangle}BCO}, S_{_{\vartriangle}ABC}$$

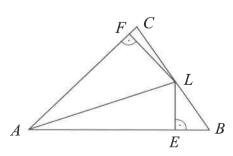
 $P_{\Delta ABC}=24~{
m cm}$ AL_1 и BL_2 — ъглополовящи $AL_1 \times BL_2 = O$ разстоянието от точка O до AB-2 cm

 $\triangle ABC \ (a:b:c=3:4:5)$



Решение:

Дадено: $\triangle ABC$ AL — ъглополовяща



Да се докаже:

$$\frac{S_{\Delta ABL}}{S_{\Delta ACL}} = \frac{AB}{AC} = \frac{BL}{CL}$$

$$\frac{S_{\triangle ABL}}{S_{\triangle ACL}} = \frac{\frac{1}{2}AB.LE}{\frac{1}{2}AC.LF} =$$

$$\triangle ABC (CA = CB)$$

 $\ll ACB = 120^{\circ}$
 $CL = 8 \text{ cm}$

Дадено:

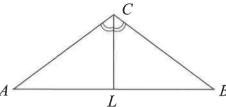
Дадено:

 $\triangle ABC (CA = CB)$

 $\triangle ABC (CA = CB)$

CD – височина

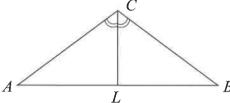
CL — ъглополовяща



Да се намери:

AC

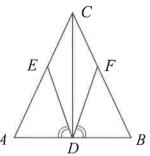
Решение:



Да се докаже:

$$CD \perp EF$$

Доказателство:

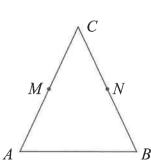


M и N- среди съответно на CA и CB

Да се докаже:

 $MN \parallel AB$

Доказателство:



Постройте права през точка M, успоредна на a. • M

Постройте симетралата на отсечката РО. Построение:

Постройте ъглополовящата на ∢ АОВ.

Построение:

Построение:

Постройте права през точка N, перпендикулярна на b.

Построение:

 $\triangle ABC (CA = CB)$ *CD* – медиана

Дадено:

 $\angle BAC = 30^{\circ}$

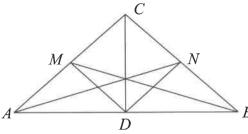
 $BB_1 \times CC_1 = H$

M— среда на AH

 $\triangle ABC$ — остроъгълен

 $CC_{\scriptscriptstyle 1}$ и $BB_{\scriptscriptstyle 1}$ — височини

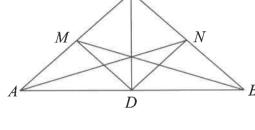
DM – ъглополовяща на ∢ ADCDN – ъглополовяща на < BDC



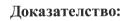
Да се докаже:

AN = BM

Доказателство:



Да се докаже: $AC_1 = 2HB_1 + 3C_1B$



- 1. $\angle ACC_1 = \angle ABB_1 = 90^{\circ} 30^{\circ} = 60^{\circ}$ \Rightarrow \triangle *HBC*, и \triangle *HCB*, – правоъгълни с ъгъл 30°.
- 2. Означаваме

$$HB_1 = x$$
, $BC_1 = y$, $BH = 2y$.

3. $\triangle ABB_1$ – правоъгълен с $< 30^\circ$ $AB = 2 \cdot BB_1$ AB = 2(x + 2y) = 2x + 4y

4.
$$AC_1 = AB - BC_1 = 2x + 4y - y =$$

= $2x + 3y = 2 \cdot HB_1 + 3 \cdot C_1B$

CD – височина

AL – ъглополовяща на \triangleleft BAC

CN – ъглополовяща на $\sphericalangle BCD$

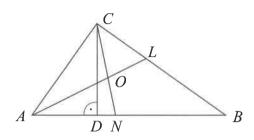
 $AL \times CN = O$

Ла се докаже:

a) $AL \perp CN$

6) CO = ON

Доказателство:



Дадено:

 $\triangle ABC$

 $S_{BC} \times AB = P$

 $\angle ACP = \angle BCP$

 $\angle ACP = 3 . \angle BAC$

Дадено:

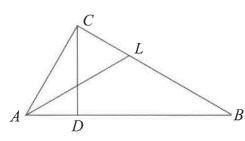
 $\triangle ABC \ (\angle C = 90^{\circ})$

CD – височина

AL — ъглополовяща

 $CD \times AL = O$

AO = OL, BL = 8 cm



Да се намери:

Ъглите на \triangle *ABC*

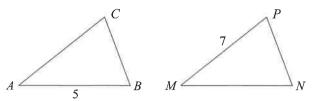
Решение:

Да се намери:

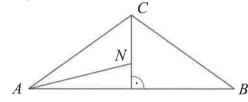
a) \triangleleft BAC, \triangleleft ABC

б) *BC*, *CD*

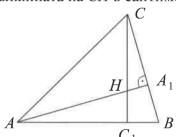
 \triangle $ABC\cong\triangle$ MNP, AB=5 cm, MP=7 cm и $P_{\triangle ABC}=18$ cm. Намерете дължината на страната PN в сантиметри.



В \triangle ABC (CA = CB) CD е височина и $N \in CD$. Броят на двойките еднакви триъгълници на чертежа е:

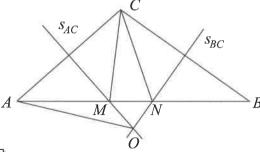


- A) 1;
- Б) 2;
- B) 3;
- Γ) 4.
- В \triangle *ABC* височините *AA*, и *CC*, се пресичат в точка *H* и *BC* = *AH*. Ако *AB* = 17 cm и *AC*, = 11 cm, дължината на СН в сантиметри е:



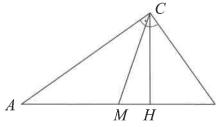
- A) 8;
- Б) 9;
- B) 5;
- Γ) 11.

Симетралите на страните AC и BC на \triangle ABC се пресичат в точка O и \triangleleft $MCN = 40^\circ$. Големината на ∢ МАО е:



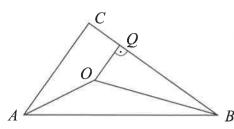
- A) 20° ;
- Б) 30°;
- B) 40° ;
- Γ) 45°.

В \triangle ABC (< $C=90^{\circ}$) медианата CM е равна на катета CB. Височината CH е равна на:



- A) AM;
- Б) *MB*;
- B) 0,5*AB*;
- Γ) 0,5AC.

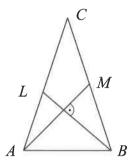
1	В \triangle $ABC \ll C = 90^{\circ}$ и $AB = 13$ cm. Ъглополовящите на острите ъгли се пресичат в точка O ,
	която е на разстояние 2 cm от BC . $P_{_{\triangle ABC}}$ в сантиметри е:



- A) 30;
- Б) 35;
- Γ) 40.

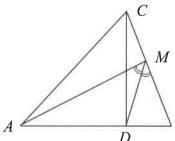
B) 32;

В \triangle *ABC* (*CA* = *CB*) медианата *AM* е перпендикулярна на ъглополовящата *BL*. Ако AC = 18 cm, дължината на AB в сантиметри е:

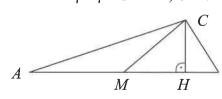


- A) 10;

- Γ) 9.
- В остроъгълния \triangle *ABC CD* е височина и \triangleleft *BAC* = 45°. Върху страната *BC* е взета точка *M* така, че MD е ъглополовяща на \triangleleft AMB. Големината на \triangleleft AMB е:



- A) 60°:
- Б) 80°;
- B) 90°;
- Γ) 100°. ___
- В \triangle ABC α : β : γ = 1 : 5 : 6, CM е медиана и CH е височина. **Не** е вярно, че:



- A) $S_{\Delta ABC} = 2 S_{\Delta AMC}$;
- Б) AB = 2 . CM;
- B) $S_{\triangle ABC} = 4 S_{\triangle MCH};$ Γ) AB = 4 . CH.

Помошно поле

Оценка $K = 2 + \frac{1}{4} \cdot n$

където n е броят на

получените точки.

Помошно поле

Оценка $K = 2 + \frac{1}{4} \cdot n$,

където n е броят на

получените точки.

- 1 (1 т.) В $\triangle ABC$ симетралата на страната AB и ъглополовящата на $\triangleleft B$ се пресичат в точка M от страната AC. Ако
 - A) 30°;

80

- Б) 40°;
- B) 50°;
- | 2 | (2 т.) В \triangle *ABC* $\alpha : \beta : \gamma = 2 : 1 : 3$. Симетралата на страната AB пресича страната BC в точка Q. Ако CQ = 4 cm, дължината на височината СД в сантиметри е:
 - A) 4;
- Б) 6;
- B) 8;
- Γ) 12.

 Γ) 60°.

- 3 (2 т.) В $\triangle ABC$ ($< C = 90^{\circ}$) височината *CD* разполовява ъглополовящата AL. Големината на $\triangleleft ABC$ е:
 - A) 30° :
- Б) 40°;
- B) 45°;
- Γ) 60°.
- 4 (3 т.) В остроъгълния $\triangle ABC$ височините AD и BQ се пресичат в точка H и AH = BC. Големината на $\sphericalangle BAC$ е:
 - A) 60° :
- Б) 45°:
- B) 30° ;
- Γ) 70°.
- 5 (4 т.) В $\triangle ABC \alpha : \beta : \gamma = 5 : 1 : 6$ и *CM* е медиана. Точка *A* е на разстояние 4 cm от *CM*. Намерете лицето на $\triangle BMC$ в квадратни сантиметри.

6 (4 т.) В \triangle ABC (\triangleleft C = 90°) ъглополовящите на \triangleleft BAC и \triangleleft ABC се пресичат в точка O. Разстоянието от точка O до страната AC е 3 cm и AB = 15 cm. Намерете периметъра на △ *ABC* в сантиметри.

Задача №	1	2	3	4	5	6
Отговори						
Получени точки						

Общ брой получени точки n =

В \triangle $ABC < A = 20^{\circ}$ и $< C = 120^{\circ}$. Симетралите на стра-
ните AC и BC пресичат AB съответно в точките M и
N. Големината на $ ∢ MCN $ е:

- A) 40° ;
- Б) 50°:
- B) 60°;
- Γ) 80°.
- 2 (2 т.) В \triangle ABC (CA = CB) BL е ъглополовяща на \triangleleft ABC. Ако BL = CL, големината на $\triangleleft ALB$ е:
 - A) 30° ;
- Б) 36°;
- B) 60° ;
- Γ) 72°.
- 3 | (2 т.) В $\triangle ABC$ ($< C = 90^{\circ}$) медианата *CM* е равна на катета ВС. Височината СН е равна на:
 - A) AM;
- Б) *ВМ*;
- Γ) 0,5AB;
- Γ) 0,5AC.
- (3. т.) В $\triangle ABC < BAC = 15^{\circ} \text{ и} < ABC = 75^{\circ}$. Ако AB = 20 cm, лицето на *ABC* в квадратни сантиметри е: B) 50;
 - A) 100;
- Б) 40;

- Γ) 60.
- (4 т.) В остроъгълния $\triangle ABC$ *CD* е височина и $\triangleleft BAC = 45^{\circ}$. Върху страната *BC* е взета точка M така, че MD е ъглополовяща на \triangleleft AMB. Намерете големината на \triangleleft AMB в градуси.

6 (4 т.) В $\triangle ABC$ $\alpha : \beta : \gamma = 1 : 5 : 6$ и *CM* е медиана. Точка *B* е на разстояние 3 cm от *CM*. Намерете лицето на *ABC* в квадратни сантиметри.

Задача №	1	2	3	4	5	6
Отговори						
Получени точки						

Общ брой получени точки n =

1 Като използвате свойствата на числовите неравенства, от първото неравенство получете второто:

a) $a < 3 \rightarrow 2a + 5 < 11$;

б) $a > -2 \rightarrow 1 - 3a < 7$.

2 Ако a < b, докажете, че са в сила неравенствата:

a) 2a + 5 < 2b + 5;

 $| 6) \frac{a-1}{3} < \frac{b-1}{3};$

B) 7 - a > 7 - b.

Съберете почленно неравенствата:

a) 5 > -3 7 > 5

б) –7 < 2 a < 3

B) a > -3b > -2

4 Ако a < b, запишете вярно неравенство:

a) $2a - 5 \bigcap 2b - 5$;

6) $-3a + 7 \boxed{-3b + 7}$;

B) $\frac{a+3}{-2}$ $\frac{b+3}{-2}$.

5 Докажете, че ако:

а) a < 3 и b > 3, то a < b;

б) a < 6 и c > 3, то $\frac{a}{2} < c$.

6 Еквивалентни ли са неравенствата:

a) 3x + 5 < 7x - 2 μ -5x < -10;

б) 3x - 1 < 3(x + 2) и 2x + 3 > 2(x - 5)?

1 Решете неравенствата:

a) 3(x-2) < 2(x+3);

6) 3(x + 4) > 5(x - 2).

2 Покажете, че всяко число x е решение на неравенствата:

a) 2(x+3) > 2(x+6) - 7;

6) (2x + 1)(2x - 1) > (x + 3)(x - 3).

84

3 Покажете, че неравенствата нямат решение:

a) $(x+3)^2 < 3(2x-1)$;

 $6) (x-4)^2 + 2(4x+1) < 0.$

4 Решете неравенствата:

a) 5x(x-2) < 4x(x-1) - 9;

6) 3x(x + 4) > 2x(x + 5) - 1.

5 Решете неравенствата:

a) $(2x-3)^2 \le (2x-1)^2$;

6) $(x-2)^3 > 4 + x^2(x-6)$.

2

Решете неравенствата:

a)
$$5(x+1) < 2(x+4)$$
;

6)
$$3(2x+5) > 2(2x-3)$$
.

Решете неравенствата и изобразете решенията им върху числова ос:

a)
$$3(x-2) > 5(x+2)$$
;

$$6) 2(3x-1) < 3(3x+2) + 1.$$

a)
$$(x-1)^2 \ge (x+3)(x-3)$$
;

$$6) (2x+1)^2 \le (2x+3)^2.$$

a)
$$\frac{x(3x+2)}{3} < \frac{x(2x+1)}{2} - 1;$$

6) 2(3x-1) < 3(3x+2) + 1.

 $6) (2x+1)^2 \le (2x+3)^2.$

6) $\left(\frac{x-1}{-2}\right)^2 > \left(\frac{x+3}{2}\right)^2$.

Изобразете върху числовата ос интервалите:

Изобразете графично всички числа x, ако:

a)
$$-2 < x < 1$$
,

6)
$$-1 \le x < 3$$
;

B)
$$1 \le x \le 3$$
.

Запишете изобразените интервали:

a)
$$\longrightarrow$$
 ;

$$6) \xrightarrow{0} 2$$

Запишете с интервали решенията на неравенствата:

a)
$$-3 < x < 0$$
;

б)
$$0 \le x < 5$$
;

B)
$$-2 < x \le 4$$
.

5 Решете неравенствата и представете решенията им графично и чрез интервали.

a)
$$\frac{x}{3} - \frac{2}{3} \cdot \left(\frac{x}{2} - \frac{3x}{4}\right) < 1 - \frac{x}{6}$$
;

6)
$$\frac{3x+5}{4} - \frac{1}{3} \cdot \left(2 + \frac{x}{2}\right) \ge x - \frac{2}{3}$$
.

1 Решете неравенствата:

a)
$$\frac{x}{-3} + \frac{x-2}{2} > 1$$
;

6)
$$\frac{x}{0.3} - \frac{x}{0.2} > 5$$
.

Решете неравенствата:

a)
$$(x-3)(x^2+5) > 0$$
;

6)
$$(x-4)(x^2+1) < 0$$
.

Решете предварително разложените на множители неравенства:

a)
$$x^3 + x^2 + 3x + 3 \ge 0$$
;

$$6) x^3 - 2x^2 + 5x - 10 \le 0.$$

Намерете стойностите на x, за които:

а) изразът
$$\frac{3x-1}{2}$$
 е не по-голям от 4;

б) изразът
$$\frac{2x-7}{-3}$$
 е не по-малък от 3.

Покажете, че неравенствата нямат решение:

a)
$$3(2x+5) < 2(3x+1)$$
;

6)
$$4(x-5) > 4x + 9$$
.

Покажете, че всяко число е решение на неравенствата:

a)
$$(x+2)^2 > (x+3)(x+1)$$
;

$$6) (x-4)(x-2) < (x-3)^2$$

3 Решете неравенствата:

a)
$$\frac{2x-5}{2} < 1 - \frac{5-3x}{3}$$
;

$$6) \ \frac{3x-1}{3} - \frac{4x-1}{4} > 1$$

4 Решете неравенствата:

a)
$$(2x-3)^2 > 4(x+2)(x-5)$$
;

6)
$$(x-2)(x^2+2x+4) < (x+1)(x^2-x+1)$$
.

Намерете за коя стойност на параметъра m неравенствата нямат решение: a) mx + 3 < 2x - 5; 6) mx + 7 > 3x + 14.

Намерете за коя стойност на параметъра m всяко число е решение на неравенствата: а) 3mx - 2 < x + 5; б) 2mx + 7 > 4x + 1.

ý

3 Решете неравенството a(ax - 5) < 2(1 - x), където a е параметър.

Решете параметричното неравенство $(x + a)^2 > (x - 3)^2$, където a е параметър.

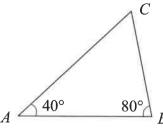
Намерете всички естествени числа, които са решения на неравенството $(x+3)(x-3)-(x+1)^2>-24$.

За коя стойност на параметъра m корените на уравнението 5x - m = 2(x + 0.5) са по-големи от 2?

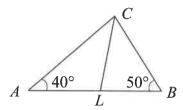
Намерете за кои стойности на параметъра m сборът от корените на уравнението |x-m+3|=2 е по-голям от 4.

Намерете за кои стойности на параметъра a неравенствата $\frac{1-4x^2}{4} - \frac{x}{3} \left(\frac{1}{2} - 3x \right) \le \frac{1}{3} \quad \text{и} \quad 3(a+x) \le 5x - a + 4 \quad \text{са еквивалентни.}$

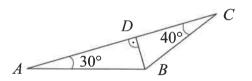
Наредете по големина страните на \triangle ABC с ъгли $\alpha = 40^{\circ}$ и $\beta = 80^{\circ}$.



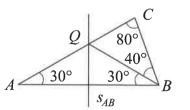
В \triangle *ABC* с ъгли $\alpha = 40^{\circ}$ и $\beta = 50^{\circ}$ е построена ъглополовящата *CL*. Подредете по големина страните на \triangle *ABC*, \triangle *ACL* и \triangle *BCL*.



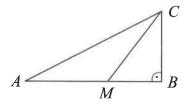
В \triangle *ABC* α: β: $\gamma = 3$: 11: 4 и *BD* е височина. Подредете по големина страните на \triangle *ABC*, \triangle *ABD* и \triangle *BCD*.



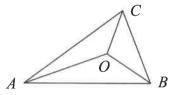
В \triangle *ABC* α : β : γ = 3 : 7 : 8. Симетралата на *AB* пресича *AC* в точка *Q*. Подредете по големина страните на \triangle *ABC*, \triangle *ABQ* и \triangle *BCQ*.



Б $\triangle ABC \ll B = 90^{\circ}$ и $M \in AB$. Докажете, че: a) CM > CB; б) CM < AC.



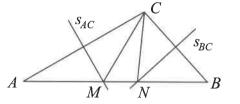
В \triangle *ABC* $\alpha = 40^{\circ}$, $\beta = 60^{\circ}$ и ъглополовящите на \triangleleft *BAC* и \triangleleft *ABC* се пресичат в точка *O*. Подредете по големина страните на \triangle *AOB*, \triangle *BOC* и \triangle *AOC*.



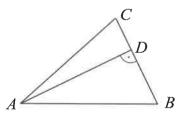
В \triangle *ABC* $\alpha = 30^{\circ}$ и $\beta = 50^{\circ}$. Симетралите на *AC* и *BC* пресичат *AB* съответно в точките *M* и *N*. Сравнете:

a) страните на \triangle *MNC*;

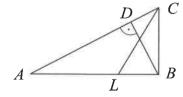
б) отсечките *AM*, *MN* и *NB*.



3 . \triangle ABC е остроъгълен и AD е височина. Докажете, че $AD < \frac{1}{2}(AB + AC)$.



В \triangle ABC $\alpha=30^\circ,$ $\beta=90^\circ,$ CL е ъглополовяща и BD е височина. Сравнете CL и BD.



Намерете дължината на бедрото на равнобедрен триъгълник със страни:

- a) 3 cm и 7 cm:
- б) 2 cm и 5 cm:
- в) 4 ст и 9 ст.

Намерете периметъра на равнобедрен триъгълник, ако две от страните му са:

- a) 3 cm и 6 cm:
- б) 5 cm и 11 cm;
- в) 7 ст и 3 ст.

Периметърът на равнобедрен триъгълник е 15 сm, а едната му страна е с 3 сm по-голяма от другата. Намерете страните на триъгълника.

І случай:

II случай:

Периметърът на равнобедрен триъгълник е 12 cm, а едната му страна е с 3 cm по-малка от другата. Намерете страните на триъгълника.

І случай:

II случай:

В четириъгълника ABCD $AC \times BD = O$. Докажете, че:

a)
$$OA + OB > AB$$
;

6)
$$AC + BD > \frac{1}{2}(AB + BC + CD + DA)$$
.

Намерете най-голямото цяло число, което е решение на неравенството:

a)
$$(x+2)^2 > (x+3)^2$$
;

6)
$$(x + 2)^3 - 32 < x^2(x + 6)$$
.

a)
$$2(x-2) > 4(x-1) - 5$$
;

6)
$$3(x-2)+6 < 4(x+8)$$
.

Решете неравенствата и подредете решенията им върху числовата ос:

a)
$$\frac{x}{-3} + \frac{x}{4} + \frac{1}{6} \ge \frac{5x}{12} - \frac{1}{2}$$
;

6)
$$1 - \frac{x}{0.3} - \frac{x}{1.5} \le \frac{1}{0.2} - \frac{x}{0.6}$$
.

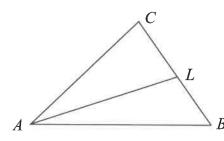
a)
$$\frac{5x}{6} - \frac{2}{3} \left(\frac{x}{2} - \frac{x}{4} \right) \le 1$$
;

6)
$$\frac{3x}{10} - \frac{4}{5} \left(\frac{x}{2} + \frac{x}{4} \right) \ge 1 - \frac{x+1}{2}$$
.

Намерете за кои стойности на параметъра а са еквивалентни неравенствата $(a-x)^2-(x+2)(x-1)<2a(a-x)+x$ $u 2(x-2a)>a^2+2$.

Намерете за кои стойности на параметъра m сборът от корените на уравнението

Отсечката AL е ъглополовяща в \triangle ABC. Докажете, че ако AB < AC, то BL < CL.



 $(2x-m+1)^2-x^2=0$ е по-голям от 8.

Ако a > b, то е вярно неравенството:

A)
$$a - 5.6 < b - 5.6$$
;

Б)
$$-7a + 3 > -7b + 3$$
;

B)
$$1 - 3a < 1 - 3b$$
;

$$\Gamma$$
) $\frac{a-5}{2} < \frac{b-5}{2}$.

Кое от неравенствата не е вярно?

A)
$$5 \cdot \frac{2}{3} < 7 \cdot \frac{2}{3}$$
;

Б)
$$0,5:5>0,2:(-2);$$

A)
$$5 \cdot \frac{2}{3} < 7 \cdot \frac{2}{3}$$
;
B) $-2 \cdot \frac{1}{2} < -5 \cdot \frac{1}{5}$;

$$\Gamma$$
) $\frac{4}{5}:3>\frac{2}{3}:5$.

Решенията на неравенството $\frac{x+3}{2} - \frac{x-1}{5} \ge \frac{x+5}{4}$ са:

A)
$$x \ge -9$$
;

Б)
$$x \ge -1$$
;

B)
$$x \le -9$$
;

$$\Gamma$$
) $x \leq -1$.

Решенията на неравенството $(x + 2)^2 - (1 - x)^2 > 8x - 5$ са:

A)
$$x < 1$$
;

Б)
$$x > 1$$
;

B)
$$x < 4$$

$$\Gamma$$
) $x > 4$.

Корените на уравнението 5x + m = 3 са положителни, ако за параметъра m е изпълнено: A) m > 3; Γ) m < 3.

B)
$$m > 1$$
;

Неравенства. Контролна работа № 1

Помошно поле

Ако a > 6 и b < 2, то със сигурност е вярно, че:

A)
$$a + b > 8$$
;

- Б) 3b < a:
- B) a < 3b;
- Γ) a-b < 4.

Решенията на неравенството $\frac{3x-1}{12} - \frac{2x+1}{-2} \le \frac{13x+17}{12}$ са:

A)
$$x \in (-\infty; -6];$$

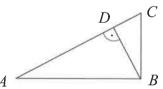
- Б) $x \in (-\infty; 6]$:
- B) $x \in (-\infty; 8.5]$;
- Γ) $x \in (-\infty; 7]$.

Решенията на неравенството $(2x-1)^3 - 8x(x-2)(x+2) < 2x(19-6x)$ са:

- A) $x \in \emptyset$;
- \mathbf{b}) всяко x;
- B) x > -2;
- Γ) x < -1.

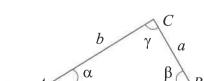
При кои стойности на параметъра т са еквивалентни неравенствата $x-m > m^2 + 3$ $H = \frac{x+m}{2} - \frac{x+1}{3} > \frac{4-x-m}{6}$?

В $\triangle ABC \ll ABC = 90^{\circ}$ и BD е височина. **Не** е вярно, че:



- A) AB > BD;
- (B) < ABD = < ACB;
- B) AB < AC;
- Γ) \triangleleft BAC $> \triangleleft$ DBC.

В \triangle *ABC AB* : *BC* : *AC* = 5 : 3 : 4. За ъглите на \triangle *ABC* е вярно, че:



- A) $\alpha > \beta > \gamma$;
- β) α < β < γ;
- B) $\beta < \alpha < \gamma$;
- Γ) $\alpha > \gamma > \beta$.

- 1 (1 т.) Ако a < b, то е вярно неравенството:
 - A) a + 3 > b + 3;
- Б) -7a < -7b:
- B) 0.3a > 0.3b;
- Γ) $\frac{a-3}{2} < \frac{b-3}{2}$
- **2** (2 т.) Решенията на неравенството $(x+2)^2 8x > (1-x)^2 5$ са: A) x > 1; Б) x < 4; B) x < 1: Γ) x > 4.

- 3 (2 т.) За ъглите на \triangle *ABC* е изпълнено, че $\alpha : \beta : \gamma = 3 : 5 : 4$. За страните на \triangle *ABC* е вярно, че:
 - A) AB < BC < AC;
- Б) AB > BC > AC;
- B) BC < AB < AC;
- Γ) BC < AC < AB.
- 4 (3 т.) Решенията на неравенството $(2x-1)^3 - 2x(19-6x) < 8x(2+x)(x-2)$ ca: A) $x \in \emptyset$; Б) всяко x; В) x > -2; Γ) x < -1.
- 5 (4 т.) Намерете естествените числа, които са решения на неравенството $\frac{(-x-1)^2}{6} - \frac{1}{3} \left(\frac{x(x+5)}{2} - \frac{2x+3}{4} \right) < 1 + \frac{3x+1}{-6}$

(4 т.) Намерете при кои стойности на параметъра m са еквивалентни неравенствата $x-m^2-3 > m$ и $\frac{x+m}{2} - \frac{4-x-m}{6} > \frac{x+1}{3}$.

Задача №	1	2	3	4	5	6
Отговори						
Получени точки						

Оценка $K = 2 + \frac{1}{4} \cdot n$, където n е броят на получените точки.

Общ брой получени точки n =

Успоредник

98

 $1 \mid (1 \text{ т.})$ Ако a < b, то е вярно неравенството:

A)
$$\frac{a+5}{-2} < \frac{b+5}{-2}$$

Б)
$$-2a + 3 < -2b$$
;

B)
$$-3a-1 > -3b-1$$
; Γ) $\frac{a+8}{-3} < \frac{b+8}{-3}$.

$$\Gamma) \frac{a+8}{-3} < \frac{b+8}{-3}.$$

2 (2 т.) Решенията на неравенството $x(x-2)(x+2) > (x-3)(x^2-3x+9)-5$ ca:

A)
$$x > 8$$
;

B)
$$x > -5.5$$
; Γ) $x < -5.5$.

Помощно поле

Оценка $K = 2 + \frac{1}{4} \cdot n$, където n е броят на получените точки.

- $3 \parallel (2 \text{ т.})$ За $\triangle ABC$ е изпълнено, че AB : BC : AC = 6 : 4 : 5.За ъглите на $\triangle ABC$ е вярно, че: A) $\alpha > \beta > \gamma$; B) $\alpha < \beta < \gamma$; B) $\beta < \alpha < \gamma$; Γ) $\beta < \gamma < \alpha$.
- 4 (3 т.) Решенията на неравенството $(-2x-1)^2 - (x+1)^2 \le 3x\left(x+1\frac{1}{3}\right) + 8 \text{ ca}:$ A) $x \ge -4$; B) $x \le 1\frac{1}{3}$; Γ) $x \le 1\frac{1}{3}$.
- 5 (4 т.) Намерете най-малкото цяло число, което е решение на неравенството $\frac{2x+1}{3} - \frac{2}{3} \left(\frac{3x+1}{2} - \frac{x+5}{4} \right) > \frac{(x-2)^2}{3} - \frac{(2x-1)(x+5)}{6}.$

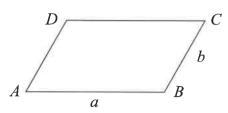
6 (4 т.) Ако a е параметър, решете неравенството $(a+x)^2 - x(x+a+5) < a(a+1) + 3(x+2)$.

Задача №	1	2	3	4	5	6
Отговори						
Получени точки						

Общ брой получени точки n =

Дадено:

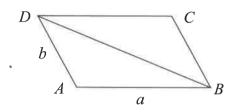
$$ABCD$$
 – успоредник $b = \frac{1}{3}a$, $P = 64$ cm



Да се намери: a, b

Решение:

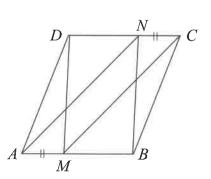
Дадено: *ABCD* – успоредник $P_{ABCD} = 30 \text{ cm}, P_{ABD} = 26 \text{ cm}$



Да се намери: BD

Решение:

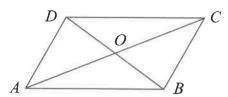
Дадено: *ABCD* – успоредник $M \in AB, N \in CD, AM = CN$



Да се докаже:

- a) *AN* || *CM*
- б) *BN* || *DM*

ABCD – успоредник $AC \times BD = O$



Да се докаже:

$$S_{ABCD} = 4S_{\triangle ABO}$$

Доказателство:

Дадено: *ABCD* – успоредник $AE \perp BD$, $CF \perp BD$ $AC \times BD = O$

Дадено:

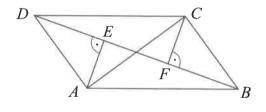
 $AC \times BD = O$ $BD \perp AB$

AC = 2BD

ABCD – успоредник

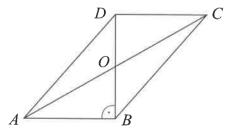
Да се докаже: OE = OF

Доказателство:



Да се намери:

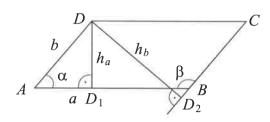
Решение:



 $\angle AOD$

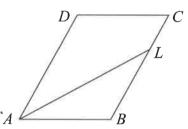
Дадено:

ABCD – успоредник $\alpha:\beta=1:5$ $DD_1 = h_a, DD_2 = h_b$ a = 12 cm, b = 8 cm



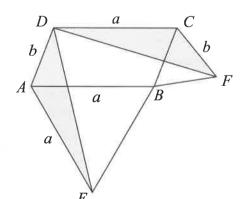
Дадено:

ABCD – успоредник AL – ъглополовяща на $\sphericalangle BAD$ BL = 7 cm, CL = 3 cm



Дадено:

ABCD – успоредник △ *ABE* и △ *BCF* – равностранни



Да се намери:

 $\alpha, \beta, h_a, h_b, S_{ABCD}$

Решение:

Ла	ce	намери:
/ 44	CC	mameph.

 P_{ABCD}

Решение:

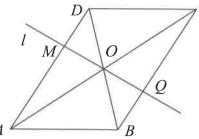
Да се докаже:

- a) $\triangle ADE \cong \triangle CFD$
- б) \triangle *EFD* равностранен

Дадено:

 $AC \times BD = O$

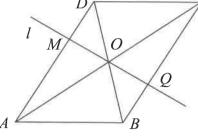
ABCD – успоредник, $AC \times BD = O$ $O \in l, l \times AD = M, l \times BC = Q$



Да се докаже:

OM = OO

Доказателство:

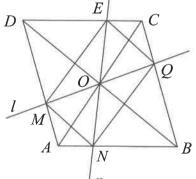


Да се докаже:

MNQE – успоредник

 $O \in l, l \times AD = M, l \times BC = Q$ $O \in n, n \land AB = N, n \land CD = E$

ABCD – успоредник

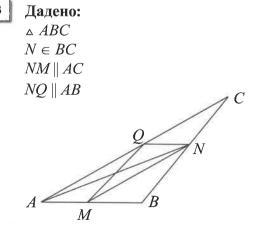


Доказателство:

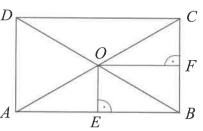
Да се докаже:

отсечката AN разполовява MQ

Доказателство:

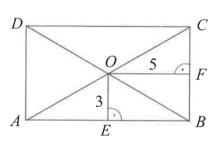


Диагоналите на правоъгълника ABCD се пресичат в точка O. Намерете разстоянията от точка O до страните на правоъгълника, ако AB = 12 cm и BC = 9 cm. Решение:

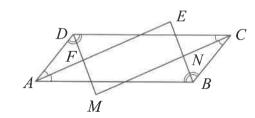


Разстоянията от пресечната точка на диагоналите на правоъгълника АВСО до страните му са 3 ст и 5 ст. Намерете периметъра и лицето на правоъгълника.

Решение:

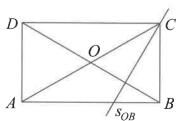


Докажете, че ъглополовящите на ъглите на успоредник се пресичат в точки, които са върхове на правоъгълник.



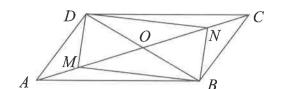
Решение:

Диагоналите на правоъгълника ABCD се пресичат в точка O. Симетралата на OB минава през точка C. Намерете големините на < OAB и < AOD.

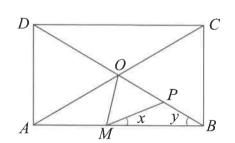


Диагоналите на успоредника ABCD са 12 cm и 8 cm. Върху по-дългия диагонал AC са взети точки M и N така, че AM = CN = 2 cm. Докажете, че MBND е правоъгълник.

Решение:



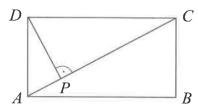
Диагоналите на правоъгълника ABCD се пресичат в точка O. Точките M и P са съответно от отсечките AB и OB и OM = OP. Докажете, че \sphericalangle $AOM = 2 \blacktriangleleft$ BMP.



Решение:

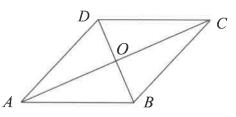
 \checkmark PMB = x, \checkmark MBP = y \Rightarrow \checkmark MPO = x + y

ABCD е правоъгълник и $DP \perp AC$ ($P \in AC$). Намерете диагоналите на правоъгълника, ако AP : PC = 1 : 3 и AD = 6 cm.

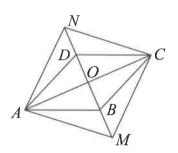


Решение:

Диагоналите на ромба ABCD се пресичат в точка O и AB = 2OB. Намерете ъглите на ромба. **Решение:**

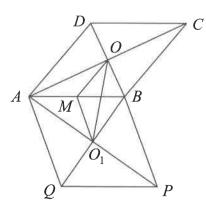


Диагоналите на ромба ABCD се пресичат в точка O. Построени са точките M и N така, че B е среда на OM, а D е среда на ON. Докажете, че AMCN е ромб.

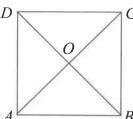


Решение:

3 На чертежа са дадени ромб ABCD с $\prec BAD = 50^\circ$ и ромб ABPQ с $\prec BAQ = 70^\circ$. Ако точката M е среда на AB, намерете ъглите на $\triangle MOO_1$, където $AC \lor BD = O$ и $AP \lor BQ = O_1$.

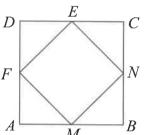


Докажете, че за квадрат със страна a и диагонал d е в сила равенството $d^2 = 2a^2$.



Доказателство:

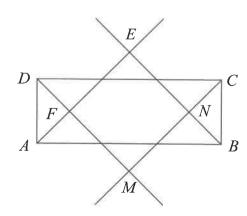
Докажете, че средите на страните на даден квадрат са върхове на друг квадрат, чието лице е 2 пъти по-малко от лицето на дадения.



Доказателство:

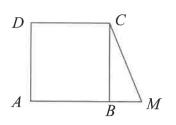
$D \longrightarrow C$	manus parajung
N N	
A = M	
	Photosophila Hy Maria

Докажете, че ъглополовящите на вътрешните ъгли на един правоъгълник при пресичането си образуват квадрат.



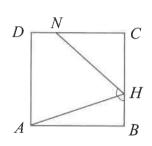
Доказателство:

На продължението на страната AB на квадрата ABCD е взета точка M така, че BM < AB. Ако CM = 2BM, намерете ъглите на $\triangle AMC$.



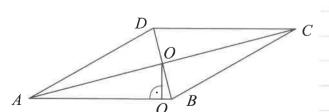
Решение:

2	На страните BC и CD на квадрата $ABCD$ са взети съответно точки H и N така, ч
	$\prec AHB = \prec AHN$. Намерете големината на $\prec HAN$.

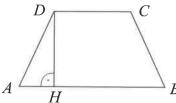


Решение:

3	$ABCD$ е ромб с остър ъгъл 30° и $AC \times BD = O$. Докажете, че:
	а) квадратът на страната на ромба е равен на произведението от диагоналите:
	б) разстоянието от точка O до AB е равно на $\frac{1}{A}AB$.

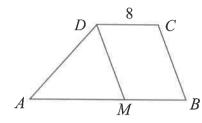


ABCD ($AB \parallel CD$) е равнобедрен трапец и DH е височина. Ако AB=12 cm и CD=6 cm, намерете АН.

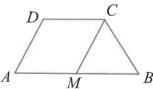


Решение:

 $ABCD\left(AB\parallel CD\right)$ е трапец. През точка D е построена права, успоредна на BC, която пресича AB в точка M. Ако CD=8 cm и $P_{_{\triangle}AMD}=28$ cm, намерете P_{ABCD} . Решение:

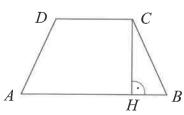


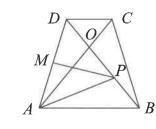
 $ABCD\left(AB\parallel CD\right)$ е трапец. През точка C е построена права, успоредна на AD, която разделя трапеца на ромб и равностранен триъгълник. Ако периметърът на ромба е 48 сm, намерете P_{ABCD} .



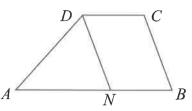
Решение:

В равнобедрен трапец ABCD с голяма основа AB е построена височината CH. Ако AH = 14 cm и BH = 3 cm, намерете дължината на CD.

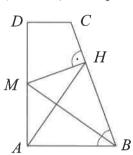




Лицето на трапеца ABCD ($AB \parallel CD$) е 140 cm². През върха D е построена отсечка DN $(N \in AB)$, успоредна на BC. Ако AB = 2 dm и CD = 8 cm, намерете S_{AAD} . Решение:

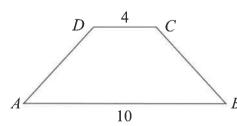


2	$ABCD$ е правоъгълен трапец, в който $AD\perp AB, AB\parallel CD$ и $AB>CD$. Ъглополовящата на
	$ ∢ ABC $ минава през точка M , която е среда на бедрото AD . Ако $ ∢ ABC = 72^{\circ} $ и $MH \perp BC$
	$(H \in BC)$, намерете големината на $\ll MAH$.



Решение:

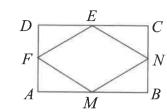
3	$ABCD$ ($AB \parallel CD$) е равнобедрен трапец. Ако $\sphericalangle BAD : \sphericalangle ADC = 1 : 3, AB = 10$ cm и
	$CD = 4$ cm, намерете S_{ABCD} .



Решение:

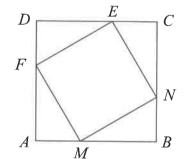
ABCD е трапец, в който $AB \parallel CD$, AD = BC и AB > CD. Диагоналите AC и BD се пресичат в точка O. Ако точките M и P са среди съответно на отсечките AD и BO и AM = MP, намерете големината на ∢ АОО.

Страните на правоъгълника ABCD са 12 cm и 8 cm. Намерете лицето на четириъгълника 1 с върхове – средите на страните на АВСД.



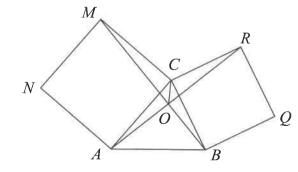
Решение:

ABCD е квадрат и AM = BN = CE = DF. Докажете, че MNEF е квадрат.

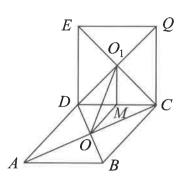


Доказателство:

Даден е \triangle *ABC* (остроъгълен). Външно за триъгълника са построени квадратите *ACMN* и BQRC. Ако $AR \times BM = O$, докажете, че CO е ъглополовяща на $\sphericalangle ACB$. Доказателство:



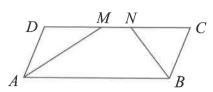
ABCD е ромб и < BAD = 50°. Външно за ромба е построен квадрат DCQE. Ако $AC \times BD = O$, $DQ \times CE = O_1$ и точка M е среда на DC, намерете ъглите на $\triangle OMO_1$. Решение:



Даден е успоредник ABCD. Външно за него са построени квадратите ADMN и DCPQ. Намерете ъглите на △ *NBP*.

В успоредника ABCD AB = 12 cm и BC = 30 cm. Ъглополовящите на ъглите му се пресичат

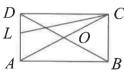
Страните на успоредника ABCD са $AB=18\,\mathrm{cm}$ и $BC=4\,\mathrm{cm}$. Ако AM е ъглополовяща на \sphericalangle BAD, а BN е ъглополовяща на \sphericalangle ABC, дължината на MN в сантиметри е:



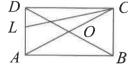
A) 10; Б) 6;

T) 8.

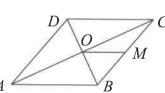
В правоъгълника ABCD $AC \times BD = O$ и $\ll COD = 120^\circ$. Ако CL е ъглополовяща на $\ll ACD$, големината на *∢ BCL* е:



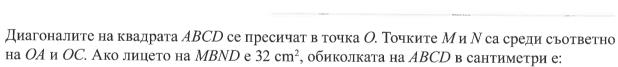
Б) 60°: B) 30°;

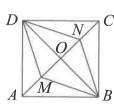


В ромба ABCD $AC \times BD = O$ и M е среда на BC. Ако $P_{ABCD} = 64$ cm, дължината на OM в сантиметри е:

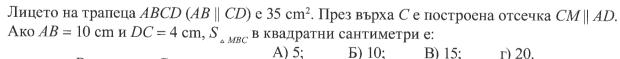


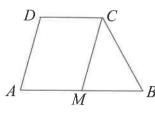
Б) 16; Γ) 8.





A) 32: Б) 16; B) 64; Γ) 128.

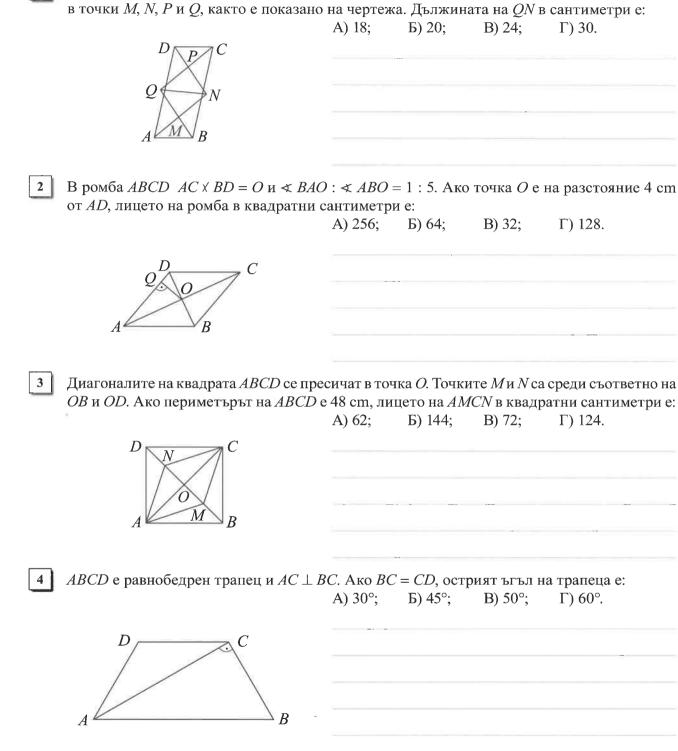




A) 5:

Б) 10;

r) 20.



Помощно поле

Оценка $K = 2 + \frac{1}{4} \cdot n$, където n е броят на

получените точки.

Помощно поле

Оценка $K = 2 + \frac{1}{4} \cdot n$

където n е броят на

получените точки.

(1 т.) Лицето на успоредник със страна 27 ст и височина към нея 3 ст е равно на лицето на квадрат. Страната на квадрата в сантиметри е:

A) 15:

Б) 10;

Γ) 6.

(2 т.) Диагоналите на правоъгълник АВСО се пресичат в точка О. Симетралата на отсечката АО минава през точка D. Тъпият ъгъл между диагоналите е равен на: A) 100°; B) 110°; B) 120°; Γ) 150°.

B) 9;

(2 т.) Ъглите, които диагоналите на ромб образуват с една от страните му, се отнасят както 4:5. Острият ъгъл на ромба е:

A) 80°:

Б) 60°: B) 50°; Γ) 40°.

(3 т.) ABCD ($AB \parallel CD$) е правоъгълен трапец с основа CD = 8 cm. Ако \triangle ABC е равностранен, дължината на АВ в сантиметри е: Б) 16; B) 10;

A) 4;

Γ) 12.

(4 т.) ABCD е квадрат. Точка E е вътрешна за квадрата и DE = CE = BC. Намерете големината на ∢ EAD в градуси.

(4 т.) В $\triangle ABC$ α : β : $\gamma = 2$: 9: 7. Външно за триъгълника е построен квадратът ACDE. Ако $AD \times CE = O$, намерете големината на $\triangleleft BOC$ в градуси.

Задача № Отговори Получени точки

Общ брой получени точки n =

1	(1 т.)	Диагоналите на успоредника <i>ABCD</i> се пресичат в точка <i>O</i> . Ако лицето на успоредника е 48 cm ² , то						
			△ <i>CDO</i> (в с Б) 24;	em²) e: B) 18;	Γ) 12.			

(2 т.) Периметърът на правоъгълник е 48 см, а страните му се отнасят както 5 : 3. Лицето на правоъгълника (B cm²) e: B) 135;

A) 125;

Б) 130;

(2 т.) Даден е ромб АВСО с периметър 80 ст. Ако ъглополовящата на < ACD образува с BD ъгъл, равен на 75°, дължината на по-малкия диагонал на ромба (в ст) е: Б) 16; B) 20; Γ) 40.

(3 т.) ABCD $(AB \parallel CD)$ е трапец с височина 6 cm и $\prec BAD = 60^{\circ}$. Ако $\triangle BDC$ е правоъгълен равнобедрен и $P_{ABCD} = 30$ cm, лицето на ABCD (в cm²) е: Б) 40; B) 48;

(4 т.) ABCD е квадрат. Точка O е вътрешна за квадрата и OB = OC = AD. Намерете големината на ∢ АОО в градуси.

(4 т.) Върху отсечката AB е взета точка C. В различни полуравнини относно правата ABса построени квадратите ACMN и CBPQ. Ако $< QNB = 40^{\circ}$, намерете големината на *∢ ABN* в градуси.

Задача №	1	2	3	4	5	6
Отговори						
Получени точки						

Общ брой получени точки n =

Помощно поле

(1 т.) Коренът на уравнението $(2x + 1)^2 = 3x(x + 2)$ е:

A) -2:

Б) -1:

B) 1:

Γ) 2.

Помошно поле

Оценка $K = 2 + \frac{1}{4} \cdot n$,

където n е броят на

получените точки.

(2 т.) В \triangle *ABC* (< *C* = 90°) медианата *CM* и ъглополовящата BL са перпендикулярни. Ако CL = 6 cm, дължината на AC в сантиметри e:

A) 12;

Б) 18;

B) 24;

B) 8:

Γ) 30.

(2 т.) Намерете колко литра вода трябва да се прибавят към 12 литра спирт от 60° , за да се получи спирт от 40° .

Б) 6;

Γ) 10.

(3 т.) Решенията на неравенството

 $\frac{x^2+1}{4} - \frac{1}{2} \left(\frac{5x-3}{3} - 2 \right) > \left(1 - \frac{x}{2} \right)^2$ ca:

B) x < 1.5:

 Γ) x > -4.5.

5 (4 т.) В \triangle *ABC* α : β : γ = 1 : 5 : 6 и височината *CD* = 10 cm. Намерете лицето на \triangle *ABC* в квадратни сантиметри.

(4 т.) Външно за ромба ABCD, в който $< BAD = 50^\circ$, е построен квадрат ABPQ. Намерете големината на < AO_1O в градуси, ако O и O_1 са пресечните точки на диагоналите съответно на ромба и квадрата.

Задача № Отговори Получени точки

Общ брой получени точки n =

(1 т.) Коренът на уравнението $(3x-2)^2 - (2x+1)^2 = 5x(x+3) - 28$ e:

(5) -1;

(2 т.) В остроъгълния $△ ABC < ACB = 45^\circ$, а BP и CQ са височини. Ако BC = 2PO, големината на $\triangleleft CB$ в градуси е:

A) 10°;

Б) 15°;

B) 20°;

B) 1;

 Γ) 30°.

(2 т.) Разстоянието между две селища А и В е 205 km. От A за B тръгва камион, чиято скорост е 50 km/h, а 30 min по-късно от B за A тръгва лека кола, движеща се със скорост, с 40% по-висока от тази на камиона. Намерете след колко часа от тръгването на камиона той и леката кола ще се срещнат.

A) 1;

Б) 2;

B) 3;

 Γ) 4.

(3 т.) Решенията на неравенството

 $\frac{(x-3)^2}{3} - \frac{(2x-1)(x-4)}{6} > x \text{ ca:}$ A) $x > 1\frac{5}{9}$; B) $x > 1\frac{3}{11}$; B) $x < 1\frac{5}{9}$; Γ) x > 5,5.

(4 т.) ABCD е правоъгълен трапец, в който $AB \parallel CD$, $BC \perp AB$ и AB > CD. Ъглополовящата на $\angle BAD$ минава през точка M, която е среда на бедрото BC. Ако $\angle BAD = 72^\circ$, намерете големината на *∢ MDC* в градуси.

(4 т.) В \triangle ABC $\alpha:\beta:\gamma=3:7:10$. Външно за триъгълника е построен квадратът ABPQ. Намерете големината на $\angle BOC$ в градуси, като O е пресечната точка на диагоналите на квадрата.

2 3 5 Задача № 4 Отговори Получени точки

Оценка $K = 2 + \frac{1}{4} \cdot n$, където n е броят на получените точки.

Общ брой получени точки n =